

43

Lecture Three:Boolean Algebra

and Logic Simplification

 Boolean Algebra

 There are some important rules must be considered to understand the

Boolean algebra which are:

1- , which does not mean addition operation, it means OR

operation.

2-

3- ̅ means the inversion of

4- ̿= A

5-

6-

7- ̅

8- ̅+ A =1

9- ̅

Ex3/ Prove that ̅

Sol: take the right side

 ̅ ̅ { since }

 ̅ ̅

 De- Morgan's Theorem

 De-Morgan’s Theorems are two additional simplification techniques,

which used to simplify Boolean expressions. It is important to note that

the more simple Boolean expression gives simple logic circuit.

43

Lecture Three:Boolean Algebra

and Logic Simplification

1- ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ̅̅ ̅̅ ̅ + ̅̅ ̅̅ ̅̅

2- ̅̅ ̅̅ ̅̅ ̅̅ = ̅. ̅

Ex4/ Write the Boolean expression for the following logic circuit.

Sol: F = A . B + C

Ex 5/ Simplify the following Boolean algebra

Y = ̅ + AB + ACB + CA + ̅+ ̅

Sol:

 ̅ + AB + ACB + CA + ̅+ ̅= ̅ (1+B)+AB + AC (1+B) + ̅+ ̅

= ̅+ ̅B + AB +AC + ̅+ ̅ Y = ̅+ B (̅ +A) +AC + ̅(1+A)

+ ̅

= ̅+ B + AC + ̅+ ̅A + ̅ Y = ̅+ B + A(C + ̅)+ ̅+ ̅

A

B

A

B
 ̅̅ ̅̅ ̅̅ ̅+ ̅

A

B

A

B ̅̅ ̅̅ ̅̅ ̅̅ ̅. ̅

A

B

C
F

1 1

1 1

1

43

Lecture Three:Boolean Algebra

and Logic Simplification

= ̅+ B + A + ̅+ ̅ Y = (̅ + A) +(B + ̅) + ̅ Y = 1+

 ̅ =1

Ex6/ using NAND and NOR gates to build other logic gates.

Sol:

First using NAND gates:

1- NOT gate

 NOT gate can be built easily by shorting the two terminal of the NAND

gate.

2- AND gate

 AND gate can be obtained only by adding inverter NAND gate to the

NAND gate as shown below.

3- OR gate

OR gate can be represented by three NAND gates.

1
1

A

B

A

AB

A+B

B

A

43

Lecture Three:Boolean Algebra

and Logic Simplification

Second using NOR gates:

1- NOT gate

2- AND gate

3- OR gate

Ex7/ Represent the following Boolean expression using only NAND

gates. F = AB + CD

Sol:

 F = ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ F= ̅̅ ̅̅ . ̅̅ ̅̅ the logic circuit is shown below

A
 ̅

A

A

A

A+B

F

C

A

D

B

43

Lecture Three:Boolean Algebra

and Logic Simplification

Ex8/draw the logic circuit to implement the following function {F = A

 ̅+B} using NOR gates only.

 Sol:

HW1: Build the following expression

HW2: Implement F = ABC + AD using NOR gates only

HW3: Express [NOT, AND, and OR] gates using NOR gates only.

 Primary Multiplication

 The primary multiplication is used to express the equivalent symbols

of the truth table states, for example if there are four variables then the

primary multiplication of { 000, 110, 111, and 001} is { ̅ ̅ ̅, AB ̅,

ABC, ̅ ̅C}. This applied for two, four… etc.

 Electronic logic circuits

 The logic circuits can be divided into two categories, combinational

and sequential logic circuits. In the combinational logic circuit, the output

depends on the inputs to the circuit while in the sequential logic circuit;

the output depends on the inputs and the past value. To design the

combinational logic circuits there are two methods, sum of product (SoP)

and product of sum (PoS).

F = A B.

B

C

A

43

Lecture Three:Boolean Algebra

and Logic Simplification

 Sum of Product(SoP)

 To design any combinational logic circuit, the following steps must be

applied.

1- Determine the numbers of inputs and outputs to the logic cct.

2- Draw the truth table of the logic cct.

3- Take the cases that gives ones logic (1) at the outputs.

4- Write the primary multiplication of the inputs that give logic (1)

outputs, each logic (1) inputs represent without dash(-) while each

(0) represent with dash.

5- Add primary multiplication to each other to obtain the canonical

form (SoP), and then simplify the final expression.

Ex 9/ Draw the logic circuit which has the following truth table.

A B C Y

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

I/P

O/P

34

Lecture Three:Boolean Algebra

and Logic Simplification

Sol: To design the logic circuit, the simplified Boolean expression must

be found.

Y = ̅ ̅C +ABC Y = C (̅ ̅+AB)

=

The logic circuit is shown in figure (1):

 Product of Sum (PoS)

 The product of sum is another way to simplify the Boolean expression

of any function. In this method zeros is taken instead of ones. It must be

noted that the final expressions of the outputs for (SoP) and (PoS) are the

same as will be illustrated in example (9).

Ex10/ Find the outputs of the following truth table by using (SoP) and

(PoS).

A B Y

0 0 1

0 1 0

1 0 1

1 1 1

C (A B)

B A C

Y

Fig 1

34

Lecture Three:Boolean Algebra

and Logic Simplification

Sol:

For (SoP)

Y = Ʃ (0, 2, 3) = ̅ ̅+A ̅+AB

= A (̅+B) + ̅ ̅

= A + ̅ ̅

= (̅+B) { See Boolean Algebra point 9}

 For (PoS)

Y = π (0)

 = (̅+B)

Ex11/ Convert then simplify the following Boolean expression from

(PoS) to (SoP).

Y = (A+B+ ̅)(̅+B+ ̅)

Sol: easily by multiplying the two brackets by each other then

Y = [A ̅+AB+A ̅+B ̅+BB+B ̅+ ̅ ̅+ ̅B+ ̅ ̅]

= B(A+ ̅)+ ̅ (A+ ̅)+B(1+ ̅)+ ̅(1+B)

= B + ̅+B+ ̅ Y = B+ ̅

Ex11/ design a logic circuit that multiply two words with (2bits)

Sol:

Let first word (A) and the second words (B) then the truth table will be

1

34

Lecture Three:Boolean Algebra

and Logic Simplification

A1A2

0 0

0 0

0 0

0 0

0 1

0 1

0 1

0 1

1 0

1 0

1 0

1 0

1 1

1 1

1 1

1 1

B1B2 W X Y Z

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

0 0 0 0

0 0 1 1

0 1 1 0

1 0 0 1

The equations of the output are given below:

W = ABCD , X= A ̅C ̅+A ̅CD +ABC ̅

Y = ̅BCD + ̅BC ̅+ A ̅ ̅D + A ̅CD + AB ̅D + ABC ̅

Z = A ̅ ̅D + ̅BCD+ AB ̅D+ ABCD

The final step of the design is the drawing of the logic gate circuit as

shown in figure (2)

34

Lecture Three:Boolean Algebra

and Logic Simplification

Fig 2

B A C

D

X

Y

Z

W

33

Lecture Three:Boolean Algebra

and Logic Simplification

 Karnaugh Maps (K- Maps)

 This is a graphical approach to finding suitable product terms for using

sum of product expressions. The map is useful for problems of up to six

variables and is particularly straightforward for most problems of three or

four variables. Although there is no guarantee of finding a minimum

solution, the methods we will develop nearly always produce a minimum.

The main difference between Boolean simplification and (K- Map) is that

(K- Map) gives the most simplified expression for the output of the truth

table. There are many types of (K- Maps) depending on the numbers of

inputs.

1- Two inputs

For two variables A and B the (K- Map) is given below for the following

truth table

NOS. A B

0 0 0

1 0 1

2 1 0

3 1 1

2- Three input

The truth table and (K- Map) for three inputs is given below

0

 ̅

B

B
A ̅ A

2

1 3

AB

C
 ̅ ̅ ̅B AB A ̅

 ̅

C

 0 2 6 4

1 3 7 5

33

Lecture Three:Boolean Algebra

and Logic Simplification

NOS. A B C

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

3- Four inputs

The truth table and (K- Map) for four inputs is given below

NOS. A B C D

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

AB
 ̅ ̅ ̅B AB A ̅

0

2 6

4

1

3 7

5

 ̅ ̅

 ̅

C ̅

CD

12

15 11

8

13

14 10

9

33

Lecture Three:Boolean Algebra

and Logic Simplification

14 1 1 1 0

15 1 1 1 1

 Important Notes:

1- To find the Boolean, the neighboring ones are taken with each

other's.

2- Using (K- Map) to find the outputs gives the most simplified

expression.

3- There are some cases cannot be obtained in real case such as the

presence of (1101) in (BCD) or (<) and (>) at the same time. These

cases are called don’t care cases which is denoted by (x).

4- The value of (x) can be one or zero depend on the neighboring cells

in the (K- Map).

5- K- Map can be used with (PoS) by taking the neighboring zeros

instead of ones to obtain inverting of output function, then taking

the compliment of result to find the final outputs.

Ex12/ for the following (K- Maps) find the outputs expressions.

1- Three inputs

The output equation is

Y = ̅+ ̅C

AB

C
 ̅ ̅ ̅B AB A ̅

 ̅

C

x 0 0 1

x 1 0 x

33

Lecture Three:Boolean Algebra

and Logic Simplification

2- Four inputs

From K- Map it can be obtained that

Y = C + ̅

Ex13/ design a logic circuit for the following

Y = Ʃ(2, 3 ,5, 9)

 on’t care = Ʃ (4, 12, 14, 15, 11)

Sol:

SoP is used in this equation, then the truth table and K- Map is given as

A B C D Y

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 X

0 1 0 1 1

AB
 ̅ ̅ ̅B AB A ̅

x

x x

x

x

x x

0

 ̅ ̅

 ̅

C ̅

CD

1

1 x

1

0

1 x

0

AB
 ̅ ̅ ̅B AB A ̅

0

1 0

x

0

1 0

1

 ̅ ̅

 ̅

C ̅

CD

x

x x

0

0

x 0

1

33

Lecture Three:Boolean Algebra

and Logic Simplification

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1

1 0 1 0 0

1 0 1 1 X

1 1 0 0 X

1 1 0 1 0

1 1 1 0 X

1 1 1 1 X

The equation of the logic circuit is [Y = ̅ ̅C + ̅B ̅+ A ̅D] and the

logic circuit is given in figure (3)

Ex14/ design a logic circuit that has the following equations

F1 = π (2,3) , F2 = Ʃ (2,3).

Fig 3

A B C D

Y

33

Lecture Three:Boolean Algebra

and Logic Simplification

Sol:

By assuming that the inputs are (A and B) the equations (F1, F2) can be

written as:

 F1 = (A + ̅)(A+B)

 = A + A ̅

= A

F2 = ̅ +AB

 = A

This means that F1 = F2, the logic circuits that gives F1 and F2 are given

below

Fig 4

A B

F2

F1

34

Lecture Three:Boolean Algebra

and Logic Simplification

HW4: using K- Map to find the simplified expression for the following

function, and then draw the logic circuit that implements it in both

methods using PoS with Boolean algebra and SoP with K- Map

F = π [1, 2, 4] & don’t care is [5,7]

Ex 15/ design a logic circuit that converts from (BCD) code to (Excess –

three) code.

Sol: The truth table has four inputs and four outputs

inputs outputs

A B C D W X Y Z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1 0 1 0 X X X X

1 0 1 1 X X X X

1 1 0 0 X X X X

1 1 0 1 X X X X

1 1 1 0 X X X X

1 1 1 1 X X X X

Y

34

Lecture Three:Boolean Algebra

and Logic Simplification

W = A + BD+BC X =B ̅ ̅ + ̅D+C ̅

Y = ̅
X = ̅ ̅ +CD

Fig5

X

W

Y

Z

A B C D

34

Lecture Three:Boolean Algebra

and Logic Simplification

HW5: design a logic circuit that converts (BCD) to (7 – segment)

HW6: design a logic circuit that compares between two words each one

of them consists two bits in Excess – three codes.

HW7: design a logic circuit that gives an even and odd parity for Excess –

three codes inputs.

 Ex16/ find the logic circuit of the following { F=Ʃ(2,4,5,6)}, and {don’t

care = (0,7) } using K- Map PoS minimization.

Sol: the truth table is and K – Map are shown below

The logic circuit is that implement function (F) can be drawn as figure

(6).

A B C Y

0 0 0 X

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 X

AB

C
 ̅ ̅ ̅B AB A ̅

 ̅

C

x 1 1 1

0 0 X 1

 ̅= ̅C F = F

 F = ̅C

 F = A + ̅ F = A + ̅

Fig6

F

A B

C

34

Lecture Three:Boolean Algebra

and Logic Simplification

Ex17/ design a logic circuit that converts (Excess – three) code to (2421)

code, using K – Map with PoS minimization.

Sol: the truth table and K – Map are shown below

A B C D W X Y Z

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 1

0 1 0 1 0 0 1 0

0 1 1 0 0 0 1 1

0 1 1 1 0 1 0 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1 0 1 0 1 1 0 1

1 0 1 1 1 1 1 0

1 1 0 0 1 1 1 1

 ̅ = ̅

 ̅= ̅ ̅+ ̅ ̅+ ̅ ̅+A ̅ ̅ ̅

 ̅= ̅ ̅+ ̅ ̅ ̅+ ̅CD+A ̅D+AC ̅

 ̅=D

33

Lecture Three:Boolean Algebra

and Logic Simplification

The logic circuit can be drawn as in the (SoP) case except that not gate is

putting on the final logic gate to obtain the inverting of (̅ ̅ ̅ ̅).

HW6: design a logic circuit that finds the primary numbers from the

following {0 15} using (K- Map) with PoS

minimization.

HW7: design a logic circuit that divides numbers from (0) to (15) by two

(2), gives (ones) outputs when the division operation has no carry and

Fig7

Z

Y

X

 W

A B C D

33

Lecture Three:Boolean Algebra

and Logic Simplification

(zeros) outputs when the division operation has carry using (K- Map)

with PoS minimization.

HW8: design a logic circuit that compares two words each one of them

has two bits using (K- Map) with PoS minimization.

