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Lecture Three:Boolean Algebra 

and Logic Simplification 

 
 Boolean Algebra 

    There are some important rules must be considered to understand the 

Boolean algebra which are: 

1-         , which does not mean addition operation, it means OR 

operation. 

2-               

3-  ̅ means the inversion of     

4-   ̿= A  

5-           

6-                             

7-   ̅         

8-  ̅+ A =1 

9-      ̅           

Ex3/ Prove that      ̅             

Sol: take the right side  

           ̅               ̅  { since           } 

            ̅               ̅    

         

 De- Morgan's Theorem 

     De-Morgan’s Theorems are two additional simplification techniques, 

which used to simplify Boolean expressions. It is important to note that 

the more simple Boolean expression gives simple logic circuit. 
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1-         ̅̅ ̅̅ ̅̅ ̅̅ ̅  =     ̅̅ ̅̅ ̅ +      ̅̅ ̅̅ ̅̅
 

 

 

2-     ̅̅ ̅̅ ̅̅ ̅̅  =   ̅.   ̅   

 

 

 

Ex4/ Write the Boolean expression for the following logic circuit. 

 

 

Sol: F = A . B + C 

Ex 5/ Simplify the following Boolean algebra 

Y =   ̅ + AB + ACB + CA +   ̅+   ̅ 

Sol: 

  ̅ + AB + ACB + CA +   ̅+   ̅=   ̅ (1+B)+AB + AC (1+B) +  ̅+   ̅ 

=   ̅+   ̅B + AB +AC +   ̅+   ̅              Y =   ̅+ B (  ̅ +A) +AC +   ̅(1+A) 

+   ̅ 

=    ̅+ B + AC +   ̅+   ̅A +   ̅               Y =    ̅+ B + A(C +   ̅)+   ̅+  ̅  

 

A 

B 

A 

B 
    ̅̅ ̅̅ ̅̅    ̅+   ̅ 

  

A 

B 

A 

B     ̅̅ ̅̅ ̅̅ ̅̅    ̅.   ̅ 
  

A 

B 

C 
F 

1 1 

1 1 

1 
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=   ̅+ B + A +   ̅+  ̅           Y =  (  ̅ + A) +(B +   ̅) +   ̅              Y =  1+ 

  ̅   =1 

Ex6/ using NAND and NOR gates to build other logic gates. 

Sol:  

First using NAND gates:  

1- NOT gate  

     NOT gate can be built easily by shorting the two terminal of the NAND 

gate. 

 

2- AND gate 

    AND gate can be obtained only by adding inverter NAND gate to the 

NAND gate as shown below. 

 

3- OR gate 

OR gate can be represented by three NAND gates. 

 

  

 

 

1 
1 

A 

B 

A 

AB 

A+B 

B 

A 
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Second using NOR gates:  

1- NOT gate  

 

 

 

2- AND gate 

 

 

 

 

3- OR gate 

 

 

Ex7/ Represent the following Boolean expression using only NAND 

gates. F = AB + CD 

Sol: 

  F =        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                     F=    ̅̅ ̅̅  .   ̅̅ ̅̅   the logic circuit is shown below  

 

 

 

 

A 
 ̅ 

 

 

A 

   
A  

A 

   
 

A+B 

F 

C 

A 

D 

B 
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Ex8/draw the logic circuit to implement the following function {F = A 

 ̅+B} using NOR gates only. 

 Sol: 

 

 

 

 

HW1: Build the following expression  

HW2: Implement F = ABC + AD using NOR gates only 

HW3: Express [NOT, AND, and OR] gates using NOR gates only.  

  Primary Multiplication  

     The primary multiplication is used to express the equivalent symbols 

of the truth table states, for example if there are four variables then the 

primary multiplication of { 000, 110, 111, and 001}  is {  ̅ ̅ ̅, AB ̅, 

ABC, ̅ ̅C}. This applied for two, four… etc.  

 Electronic logic circuits 

     The logic circuits can be divided into two categories, combinational 

and sequential logic circuits. In the combinational logic circuit, the output 

depends on the inputs to the circuit while in the sequential logic circuit; 

the output depends on the inputs and the past value. To design the 

combinational logic circuits there are two methods, sum of product (SoP) 

and product of sum (PoS). 

F = A      B. 

  

B 

C 

 

A 
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 Sum of Product(SoP) 

     To design any combinational logic circuit, the following steps must be 

applied. 

1- Determine the numbers of inputs and outputs to the logic cct. 

2- Draw the truth table of the logic cct. 

3- Take the cases that gives ones logic (1) at the outputs. 

4- Write the primary multiplication of the inputs that give logic (1) 

outputs, each logic (1) inputs represent without dash(-)  while each 

(0) represent with dash. 

5-  Add primary multiplication to each other to obtain the canonical 

form (SoP), and then simplify the final expression. 

Ex 9/ Draw the logic circuit which has the following truth table. 

 

 

A B C  Y 

0 0 0  0 

0 0 1  1 

0 1 0  0 

0 1 1  0 

1 0 0  0 

1 0 1  0 

1 1 0  0 

1 1 1  1 

 

I/P 

O/P 
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Sol: To design the logic circuit, the simplified Boolean expression must 

be found. 

Y =  ̅ ̅C +ABC                                 Y = C ( ̅ ̅+AB) 

=  

The logic circuit is shown in figure (1):  

 

 

 

 

 

   Product of Sum (PoS) 

     The product of sum is another way to simplify the Boolean expression 

of any function. In this method zeros is taken instead of ones. It must be 

noted that the final expressions of the outputs for (SoP) and (PoS) are the 

same as will be illustrated in example (9). 

Ex10/ Find the outputs of the following truth table by using (SoP) and 

(PoS).  

 

 

 

A B  Y 

0 0  1 

0 1  0 

1 0  1 

1 1  1 

C (A    B ) 

 

 

   

B A C 

Y 

Fig 1 
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Sol:  

For (SoP) 

Y = Ʃ (0, 2, 3) =  ̅  ̅+A ̅+AB 

= A ( ̅+B) +  ̅  ̅  

= A + ̅  ̅ 

= ( ̅+B)  { See Boolean Algebra point 9} 

 For (PoS) 

Y = π (0) 

  = ( ̅+B) 

Ex11/ Convert then simplify the following Boolean expression from 

(PoS) to (SoP). 

Y = (A+B+ ̅)( ̅+B+ ̅)  

Sol: easily by multiplying the two brackets by each other then  

Y = [A ̅+AB+A ̅+B ̅+BB+B ̅+ ̅ ̅+ ̅B+ ̅ ̅] 

= B(A+ ̅)+  ̅ (A+ ̅)+B(1+ ̅)+  ̅(1+B) 

= B + ̅+B+ ̅                        Y = B+ ̅               

Ex11/ design a logic circuit that multiply two words with (2bits)  

Sol: 

Let first word (A) and the second words (B) then the truth table will be 

1 
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A1A2 

0  0 

0  0         

0  0 

0  0 

0  1 

0  1 

0  1 

0  1  

1  0 

1  0   

1  0  

1  0 

1  1 

1  1 

1  1 

1  1 

B1B2  W X Y Z 

0 0 

0 1 

1 0 

1 1 

0 0 

0 1 

1 0 

1 1 

0 0 

0 1 

1 0 

1 1 

0 0 

0 1 

1 0 

1 1  

 0   0 0 0 

0   0 0 0 

0   0 0 0 

0   0 0 0 

0   0 0 0 

0   0 0 1 

0   0 1 0 

0   0 1 1 

0   0 0 0 

0   0 1 0 

0   1 0 0 

0   1 1 0 

0  0  0 0 

0  0  1 1 

0  1  1 0 

1  0  0 1 

The equations of the output are given below: 

W = ABCD ,      X= A ̅C ̅+A ̅CD +ABC ̅  

Y =  ̅BCD +  ̅BC ̅+ A ̅ ̅D + A ̅CD + AB ̅D + ABC ̅ 

Z =  A ̅ ̅D +  ̅BCD+ AB ̅D+ ABCD 

The final step of the design is the drawing of the logic gate circuit as 

shown in figure (2) 
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Fig 2 

 

 

   

B A C 
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 Karnaugh Maps (K- Maps) 

     This is a graphical approach to finding suitable product terms for using 

sum of product expressions. The map is useful for problems of up to six 

variables and is particularly straightforward for most problems of three or 

four variables. Although there is no guarantee of finding a minimum 

solution, the methods we will develop nearly always produce a minimum. 

The main difference between Boolean simplification and (K- Map) is that 

(K- Map) gives the most simplified expression for the output of the truth 

table. There are many types of (K- Maps) depending on the numbers of 

inputs. 

1- Two inputs 

For two variables A and B the (K- Map) is given below for the following 

truth table 

NOS. A B 

0 0 0 

1 0 1 

2 1 0 

3 1 1 

2- Three input 

The truth table and (K- Map) for three inputs is given below 

 

 

 

0 

 ̅ 

B 

B 
A  ̅ A 

2 

1 3 

AB 

C 
 ̅ ̅  ̅B AB A ̅ 

 ̅ 

C 

 0 2 6 4 

1 3 7 5 



 
 

 

33 

 

Lecture Three:Boolean Algebra 

and Logic Simplification 

 
NOS. A B C 

0 0 0 0 

1 0 0 1 

2 0 1 0 

3 0 1 1 

4 1 0 0 

5 1 0 1 

6 1 1 0 

7 1 1 1 

3- Four inputs 

The truth table and (K- Map) for four inputs is given below 

NOS. A B C D 

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

4 0 1 0 0 

5 0 1 0 1 

6 0 1 1 0 

7 0 1 1 1 

8 1 0 0 0 

9 1 0 0 1 

10 1 0 1 0 

11 1 0 1 1 

12 1 1 0 0 

13 1 1 0 1 

AB 
 ̅ ̅  ̅B AB A ̅ 

0 

2 6 

4 

1 

3 7 

5 

 ̅ ̅ 

 ̅  

   

C ̅ 

CD 

 
12 

15 11 

8 

13 

14 10 

9 
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14 1 1 1 0 

15 1 1 1 1 

 Important Notes: 

1- To find the Boolean, the neighboring ones are taken with each 

other's. 

2-  Using (K- Map) to find the outputs gives the most simplified 

expression. 

3- There are some cases cannot be obtained in real case such as the 

presence of (1101) in (BCD) or (<) and (>) at the same time. These 

cases are called don’t care cases which is denoted by (x). 

4- The value of (x) can be one or zero depend on the neighboring cells 

in the (K- Map).  

5- K- Map can be used with (PoS) by taking the neighboring zeros 

instead of ones to obtain inverting of output function, then taking 

the compliment of result to find the final outputs.  

Ex12/ for the following (K- Maps) find the outputs expressions. 

1- Three inputs 

        

 

 

 

The output equation is 

Y =  ̅+  ̅C 

 

AB 

C 
 ̅ ̅  ̅B AB A ̅ 

 ̅ 

C 

x 0 0 1 

x 1 0 x 
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2- Four inputs 

 

 

 

 

 

 

From K- Map it can be obtained that  

Y = C +  ̅ 

Ex13/ design a logic circuit for the following  

Y = Ʃ(2, 3 ,5, 9) 

 on’t care = Ʃ (4, 12, 14, 15, 11) 

Sol: 

SoP is used in this equation, then the truth table and K- Map is given as  

A B C D  Y 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 1 

0 0 1 1 1 

0 1 0 0 X 

0 1 0 1 1 

AB 
 ̅ ̅  ̅B AB A ̅ 

x 

x x 

x 

x 

x x 

0 

 ̅ ̅ 

 ̅  

   

C ̅ 

CD 

1 

1 x 

1 

0 

1 x 

0 

AB 
 ̅ ̅  ̅B AB A ̅ 

0 

1 0 

x 

0 

1 0 

1 

 ̅ ̅ 

 ̅  

   

C ̅ 

CD 

x 

x x 

0 

0 

x 0 

1 
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0 1 1 0 0 

0 1 1 1 0 

1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 0 

1 0 1 1 X 

1 1 0 0 X 

1 1 0 1 0 

1 1 1 0 X 

1 1 1 1 X 

The equation of the logic circuit is [Y =  ̅ ̅C +  ̅B ̅+ A ̅D] and the 

logic circuit is given in figure (3) 

 

 

  

 

 

 

 

 

 

Ex14/ design a logic circuit that has the following equations 

F1 = π (2,3) , F2 = Ʃ (2,3). 

Fig 3 

    

A B C D 

 

 

 

 

Y 
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Sol: 

By assuming that the inputs are (A and B) the equations (F1, F2) can be 

written as: 

 F1 = (A +  ̅)( A+B)  

 = A + A ̅   

= A 

F2 =   ̅  +AB  

 = A 

This means that F1 = F2, the logic circuits that gives F1 and F2 are given 

below 

 

 

 

 

 

 

 

 

 

 

Fig 4 

  

A B 

 

 

 

 

 

 

F2 

F1 
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HW4: using K- Map to find the simplified expression for the following 

function, and then draw the logic circuit that implements it in both 

methods using PoS with Boolean algebra and SoP with K- Map 

F = π [1, 2, 4] & don’t care is [5,7] 

Ex 15/ design a logic circuit that converts from (BCD) code to (Excess – 

three) code. 

Sol: The truth table has four inputs and four outputs 

 

 

 

 

 

 

 

 

 

 

 

 

 

inputs  outputs 

A B C D  W X Y Z 

0 0 0 0  0 0 1 1 

0 0 0 1  0 1 0 0 

0 0 1 0  0 1 0 1 

0 0 1 1  0 1 1 0 

0 1 0 0  0 1 1 1 

0 1 0 1  1 0 0 0 

0 1 1 0  1 0 0 1 

0 1 1 1  1 0 1 0 

1 0 0 0  1 0 1 1 

1 0 0 1  1 1 0 0 

1 0 1 0  X X X X 

1 0 1 1  X X X X 

1 1 0 0  X X X X 

1 1 0 1  X X X X 

1 1 1 0  X X X X 

1 1 1 1  X X X X 

Y 
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W = A + BD+BC X =B ̅ ̅ + ̅D+C ̅ 
 

Y =  ̅ 
X =  ̅ ̅ +CD 

 

 

Fig5 

 

X 

 

 

W 

Y 

Z 

 

 
 

 

 

 

 

   

A B C D 
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HW5: design a logic circuit that converts (BCD) to (7 – segment) 

HW6: design a logic circuit that compares between two words each one 

of them consists two bits in Excess – three codes.  

HW7: design a logic circuit that gives an even and odd parity for Excess – 

three codes inputs.    

 Ex16/ find the logic circuit of the following { F=Ʃ(2,4,5,6)}, and {don’t 

care = (0,7) } using K- Map PoS minimization. 

Sol: the truth table is and K – Map are shown below  

 

 

 

 

 

 

  

The logic circuit is that implement function (F) can be drawn as figure 

(6).  

 

 

 

 

A B C  Y 

0 0 0  X 

0 0 1  0 

0 1 0  1 

0 1 1  0 

1 0 0  1 

1 0 1  1 

1 1 0  1 

1 1 1  X 

AB 

C 
 ̅ ̅  ̅B AB A ̅ 

 ̅ 

C 

x 1 1 1 

0 0 X 1 

 ̅=  ̅C                   F = F    

                           F =  ̅C   

                  F = A +  ̅                 F = A +  ̅                  

                  

 

Fig6 

F 

  

A B 

 

 

C 
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Ex17/ design a logic circuit that converts (Excess – three) code to (2421) 

code, using K – Map with PoS minimization. 

Sol: the truth table and K – Map are shown below 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

A B C D  W X Y Z 

0 0 1 1  0 0 0 0 

0 1 0 0  0 0 0 1 

0 1 0 1  0 0 1 0 

0 1 1 0  0 0 1 1 

0 1 1 1  0 1 0 0 

1 0 0 0  1 0 1 1 

1 0 0 1  1 1 0 0 

1 0 1 0  1 1 0 1 

1 0 1 1  1 1 1 0 

1 1 0 0  1 1 1 1 

 ̅ =  ̅ 

 

 ̅=  ̅ ̅+ ̅ ̅+ ̅ ̅+A ̅ ̅ ̅ 

 

 ̅=  ̅ ̅+ ̅ ̅ ̅+ ̅CD+A ̅D+AC ̅ 

 

 ̅=D 
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The logic circuit can be drawn as in the (SoP) case except that not gate is 

putting on the final logic gate to obtain the inverting of ( ̅  ̅  ̅  ̅). 

 

 

 

 

 

 

 

 

 

 

 

 

 

HW6: design a logic circuit that finds the primary numbers from the 

following {0                                 15} using (K- Map) with PoS 

minimization. 

HW7:  design a logic circuit that divides numbers from (0) to (15) by two 

(2), gives (ones) outputs when the division operation has no carry and 

Fig7 

Z 
 

Y 

 

 

 

 

 

 
 

X  

 

 

 

 

 

 W    

A B C D 
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(zeros) outputs when the division operation has carry using (K- Map) 

with PoS minimization. 

HW8: design a logic circuit that compares two words each one of them 

has two bits using (K- Map) with PoS minimization. 

        


